czwartek, 28 lipca 2016

Gwintowniki do stali nierdzewnej INOX

Dzień dobry

    Obróbka skrawaniem stali Inox zawsze przysparza wiele problemów. Stal INOX jest ciągliwa i podczas pracy lepi się do gwintowników, wierteł. Powoduje to odsunięcie krawędzi skrawającej narzędzia od obrabianego przedmiotu, błyskawiczne nagrzewanie, często słychać charakterystyczny pisk. Przegrzane narzedzie tępi się i nie nadaje do dalszej obróbki. Wyjściem z tego problemu są specjalne narzędzia do obróbki stali nierdzewnej: wiertła kobaltowe, narzynki do stali nierdzewnej, gwintowniki INOX, frezy INOX i inne. Oprócz tego konieczne jest użycie specjalnych dedykowanych
olejów do wiercenia i gwintowania nierdzewki np. TEREBOR.

    Miałem niedawno możliwość przekonania sie na własnej skórze, co to znaczy nacinanie gwintu na szpilce z nierdzewki zwykłą narzynką i narzynką do stali nierdzewnej z użyciem Tereboru. W pierwszym wypadku zwykła narzynka zrywała zwoje, bardzo ciężko szło i gwint wyglądał tragicznie. W niektórych miejscach był zerwany nawet na połowie obwodu. W drugim wypadku w ruch poszła narzynka do stali nierdzewnych i preparat Terebor. Efekt był zupełnie inny, pełny gładki gwint szybko i sprawnie nacięty. Błąd polegał jedynie na tym, że krzywo zaczęliśmy, ale to sprawa wprawy i przygotowania czoła pręta.

    Podobnie ma się sprawa z gwintownikami do stali INOX. Wykonane są ze stali HSSE i posiadają geometrię i powłoki umożliwiające obróbkę stali nierdzewnych. Gwintowniki ręczne i wysokowydajne stosuje sie w obróbce stali nierdzewnych austenitycznych, stali nierdzewnych ferrytyczno-austenitycznych (duplex).

Występuje kilka modeli gwintowników zależnie od przeznaczenia ręczne HSSE i HSSE z powłoką TIN, oraz wysokowydajne, przeznaczone do pracy na obrabiarkach konwencjonalnych i CNC.:
Poniżej kilka ich typów:

Ręczne HSSE




Do otworów nieprzelotowych < 2,5xD

Gwintownik INOX R40 HL
Cechy gwintownika:
 Supergładka i odporna na ścieranie powłoka HL,
Rowki spiralne 40
Opuszczenie stożkowe średnicy zewnętrznej gwintu
Wzmocniona konstrukcja
Materiał HSSE
Nakrój C (2-3xP)
Wykonanie wg DIN-371; DIN-376; DIN-374

Gwintownik INOX R40 OX
Cechy gwintownika:
Azotopasywowane OX
Rowki spiralne 40
Opuszczenie stożkowe średnicy zewnętrznej gwintu
Wzmocniona konstrukcja
Materiał HSSE
Nakrój C (2-3xP)
Wykonanie wg DIN-371; DIN-376; DIN-374

Do otworów przelotowych < 3xD

Gwintownik INOX B HL
Cechy gwintownika:
Supergładka i odporna na ścieranie powłoka HL
Rowki proste ze skośną powierzchnią natarcia
Materiał HSSE
Nakrój B (4-5xP)
Wykonanie wg DIN-371; DIN-376; DIN-374

Gwintownik INOX B OX
Cechy gwintownika:
Azotopasywowane OX
Rowki proste ze skośną powierzchnią natarcia
Materiał HSSE
Nakrój B (4-5xP)


Wykonanie wg DIN-371; DIN-376; DIN-374.

środa, 27 lipca 2016

Jak położyć płytki? Poradnik

Cześć

    Dużo osób próbowało, jednym wyszło lepiej innym gorzej, albowiem to wbrew pozorom nie łatwa sprawa. Na finalny sukces ma wpływ sporo czynników. Jednym jest czas, o ile wykonujemy to dla siebie i nikt nas nie goni to warto solidnie się do pracy przygotować. Mam na myśli informacje teoretyczne i sprzęt.

Co może sie przydać z materiałów i narzędzi:

Płytki, jeśli układamy je w środku to broń Boże nie gresowe, bo w przyszłości jak będziemy chcieli zrobić otwór na kołek rozporowy, czy rury instalacyjne to sie zdziwimy i to bardzo mocno. Do płytek przydadzą sie listwy z tworzywa, choć są one mniej modne, ale ja uważam, że moża nimi zakryć to co nam nie wyjdzie. No i narożniki są bardziej bezpieczne, zwłaszcza jak mamy małe dzieci.

Klej do plytek, jest tego masa zawsze coś się znajdzie na naszą kieszeń.

Fugi, tu nie warto kombinować do wnętrz zwykłe, a na zewnątrz mrozoodporne (zalecam najlepszej jakości, nie ma nic gorszego niż przeciekający balkon)

Przecinarka do glazury, elektryczna lub ręczna. Jeśli ręczne to sugeruję Walmera, dobra Polska Firma w niezłej cenie. Jeśli elektryczna to może być tania Dedra lub Pansam, powinno się tylko w trakcie zakupu sprawdzić czy tarcza diamentowa nie ma bicia. Trzeba pamiętać, że ważniejsze niż elektryczna przecinarka do płytek jest to, jaką tarczę diamentową użyjemy.

Osprzęt glazurniczy, nakolanniki, sznurek traserski, krzyżyki i kliny do płytek, młotek gumowy.

Poziomica aluminiowa  to ważna sprawa, bez niej nic nam nie wyjdzie. Miara zwijana, ołówek lub flamaster.

Materiał zaczerpniety z: poradniknarzedziowy.pl

Jak już wszystko mamy można wziąć się do projektowania, mam na myśli sposób ułożenia płytek. Można je poukładać na sucho i przemyśleć całość kompozycji, estetyka to jedno i jakość to drugie.

 - Rozpoczynamy od przygotowania podłogi i ścian. Jest to jeden z najważniejszych elementów. Odmiennie będziemy robić w wypadku nowej podłogi (nowe tynki i wylewki muszą być związane, minimum 3-4 tygodnie w temperaturze pokojowej) a inaczej w przypadku starej. Poziomicą i łatą sprawdzamy poziom, usuwamy wszelkie wystające kawałki betonu, starego kleju, farby, gipsu.  Czasami trzeba popracować przecinakiem i młotkiem, na koniec wszystko odkurzyć i tu uwaga panowie - odkurzacz przemysłowy jest bardziej efektywny niż domowy. Na równą podłogę i scianę nakładamy grunt, lub jeżeli powierzchnia jest mocno nierówna to wylewkę samopoziomująca. Zachować czasy schnięcia!!!
Reasumując podłoże musi być równe i dobrze związane.

 - Następnie przystępujemy do właściwego projektowania, mam na myśli sposób rozłożenia płytek. Jeszcze raz układamy je na sucho, z uwzględnieniem szerokości fug. Na ściany ciężko jest ułożyć płytki na sucho :) trzeba wykorzystać sznurek traserski z farbką  lub miarę, poziomica, łata aluminiowa i ołówek. Estetyka to jedno i jakość to drugie.

 - Przystępujemy do układania glazury. W pierwszej kolejności mieszamy zaprawę klejową, mechanicznie lub ręcznie. Polecam mieszanie mechaniczne, pamiętamy najpierw woda potem sucha zaprawa, odczekać i mieszać. Porcja zaprawy dostosować do tępa układania płytek. Klej kładziemy na  podłożu za pomocą kielni i rozprowadzamy go pacą zębatą, 8mm, 10mm, 12mm, zależnie od wielkości płytek i nierówności podłoża. Na klej kładziemy płytkę, którą dodatkowo dociskamy i obijamy na całej powierzchni młotkiem z gumy. Zabezpieczamy krzyżykiem narożniki i sprawdzamy poziomicą czy powierzchnia jest równa. Czasami się zdarza, że płytki są nierówne, wtedy trzeba odpowiednio korygować krzyżykami dystansowymi. Jeśli (kleju jest|zaprawy nałożymy} za dużo (płytka jest za wysoko) lub za mało (płytka jest niżej niż pozostałe), należy ją oderwać i skorygować ilość kleju. Najlepiej zeskrobać kielnią klej i nałożyć na nowo. Paca zębata rozprowadza zawsze tyle samo kleju, trzymając ją pod różnym kątem można nałożyć mniej lub więcej kleju. Po przyklejeniu pierwszego rzędu płytek, ostrożnie usuwamy klej z fug i mokrą gąbką czyścimy powierzchnię z kleju. Są takie kleje, które jak wyschną to nie można ich usunąć inaczej jak tylko środkami chemicznymi na bazie kwasu.
Ostatnie lub pierwsze płytki, w zależności od kompozycji trzeba przyciąć, pamiętając o dylatacji, odstępie od ściany. Najwięcej kłopotu przysparzają powierzchnie nieregularne lub rury i puszki elektryczne. Bezbłędnie spisuje sie tutaj otwornica diamentowa - do gresu, lub otwornica do płytek. Powierzchnie nieregularne obrabiamy techniką kombinowaną: najpierw narożniki wiertłem do płytek a następnie nacinamy tarczą diamentową lub nacinamy rysikiem i wyłamujemy szczypcami do płytek. Na rynku pojawiły się sie specjalistyczne elektronarzędzia do cięcia linii nieregularnych, ale nie są one dedykowane dla amatorów (ze względu na cenę). Ostre krawędzie gładzimy osełką lub tarczą diamentową.

 - Po 24 godzinach, od przyklejenia ostatniej płytki przystępujemy do fugowania. Czyli zapełnieniu szczelin masą o odpowiednim kolorze. Zaprawę do fugowania nanosimy na płytki w zasięgu ręki nie większą niż 1m kw. Rozprowadzamy gumową pacą, skośnie do fug tak długo aż masa wypełni wszystkie szpary. I myjemy powierzchnie płytek mokrą gąbką, nacinaną lub gładką. Po kilku godzinach można ostatecznie wymyć podłogę mopem i przystąpić do wykańczania, listami przypodłogowymi lub narożnikami.

Powodzenia



wtorek, 26 lipca 2016

Filtr odwróconej osmozy

    Technika oczyszczania wody metodą odwróconej osmozy.
Weną do napisania tego artykułu jest obserwacja ludzi w marketach kupujących na masową skalę tanią wodę w butelkach. Z jakiego powodu to robią? - bo potrzebują mieć czystą wodę do picia, gotowania itd. Nie wiem czy wiedzą, ale w butelkach jest kranówa oczyszczona przemysłowymi filtrami odwróconej osmozy i uzdatniona. Taką samą wodę można we własnym zakresie wyprodukować kupując domowy zestaw np. RO6. Jeszcze kilka lat temu takie zestawy kosztowały ponad 600 zł. Dziś ze powodu rozpowszechnienia technologii cena spadła o prawie połowę. Tak samo filtry wymienne i membrana odwróconej osmozy są już znacznie tańsze. Zatem wymiana i wymiana filtrów nie obciąży tak naszej kieszeni.

    Wracając do tematu napiszę, czym jest proces odwróconej osmozy.
Żeby zrozumieć, czym ona jest trzeba cofnąć się do szkoły, a konkretnie na lekcję biologii i przerobić jeszcze raz proces osmozy naturalnej.
    Polega ona na samorzutnym przenikaniu rozpuszczalnika przez membranę półprzepuszczalną w kierunku roztworu o większym stężeniu (jeżeli układ tworzą roztwór i rozpuszczalnik lub dwa roztwory o różnym stężeniu). Ciśnienie zewnętrzne równoważące przepływ osmotyczny nazywane jest ciśnieniem osmotycznym charakterystycznym dla danego roztworu. Jeśli po stronie roztworu o większym stężeniu wytworzy się ciśnienie hydrostatyczne, wyższe niż osmotyczne, rozpuszczalnik będzie przenikał z roztworu o większym stężeniu do roztworu rozcieńczonego, a więc odwrotnie niż w przypadku osmozy naturalnej. Proces ten nazywamy odwrócona osmozą (z ang. reverse osmosis). Jaka z tego korzyść? Ze względu na rosnące skażenie środowiska, w tym wody i jej ujęć mamy możliwość pozyskana wody pozbawionej zanieczyszczeń, lub znacznego ograniczenia zanieczyszczenia tej wody.
Membrana RO skutecznie ( 90-99%) usuwa min: metale ciężkie, wirusy, rtęć, ołów, kadm, stront, cyjanki, chlorki, bromki, arsen i inne. Dzieje się tak ponieważ ścianki membranymają  mikro pory o średnicy znacznie mniejszej niż wyżej wymienione cząsteczki.
    Skuteczne pozyskiwanie wody to proces kilkuetapowy. Najbardziej skuteczny w domowych warunkach jest sześciostopniowy system RO6.



    Pierwszy etap filtrowania to zgrubne dwa filtry sznurkowe 25 i 10 mikronów, oraz filtr węglowy.

    Kolejny etap to membrana odwróconej osmozy. Jest ich kilka rodzajów w praktyce najczęściej używa się tą z numerem 75. Ma ona wydajność na poziomie 75 galonów, inaczej to 280 litrów na dobę. Tu sie trochę zatrzymam. Woda po przejściu przez membranę RO jest niejako całkowicie pozbawiona minerałów a picie samej takiej wody nie jest zdrowe. Na potwierdzenie tch słów przytoczę spostrzeżenie pewnej osoby, która przetestowała to niejako na sobie. Wybierając się na jednodniowe wycieczki rowerowe piła wodę butelkowaną o zawartości minerałów 150-300 mg/litr. Czyli taką Po RO i szybkim mineralizatorze. Osoba ta zauważyła, że pod koniec kilkugodzinnej jazdy miała częste skurcze. Było to efektem braku magnezu w organizmie. Kiedy przestawiła się na wodę źródlaną o wysokiej zawartości minerałów około 1500-1700 mg/litr problem zniknął. Wniosek z tego taki, że powinno się unikać wody bezpośrednio z RO i na takiej wodzie bazować. Oczywiście jedna szklanka nikogo nie zabije.
Żeby była jasność chodzi mi o picie czystej wody z RO. Jeżeli taką wodę użyjemy do zaparzenia np. ziół to wzbogacimy ją o olbrzymią ilość wartościowych składników, lub jak do tej wody wciśniemy odrobinę soku z cytryny. Problem ten po części rozwiązuje wkład dolomitowy.

    Jest to kolejny element systemu. Jest on wypełniony dolomitem i ma za zadanie podnieść poziom wapnia i magnezu w wodzie.
Ciężko jest dokładnie napisać, jaki stopień zmineralizowania daje ten wkład, ale jest to w granicy 50-250 mg/litr. Ważne jest, aby mineralizator był ustawiony w pionie.

Oto tabelka opisująca poziom zmineralizowania wody:

Klasyfikacja wód opakowanych wg stopnia mineralizacji (ogólnej zawartości składników rozpuszczonych)
Bardzo niskozmineralizowane: < 50 mg/l
niskozmineralizowane: > 50 –500 mg/l
średniozmineralizowane: > 500 –1500 mg/l
wysokozmineralizowane: > 1500 mg/l

    Jak widać woda z RO po mineralizatorze klasuje się w dolnej lub w środkowej granicy wód niskozmineralizowanych.
Jednym z trafnych rozwiązań powodujących że woda będzie mocniej zmineralizowana jest zamontowanie mineralizatora w pozycji pionowej. Wiem, że pierwotne ułożenie RO6tego nie przewiduje, jednak Pmyślmy:
Mineralizator to tuba z dolomitem, po pewnym czasie dolomit sie wypłucze i osiądzie na dnie. Natomiast na górze wytworzy sie wolna przestrzeń i woda będzie przepływać nad dolomitem. Mineralizator w orientacji pionowej zagwarantuje przepływ wody przez dolomit, aż do jego zupełnego wypłukania.

    Ostatnim elementem jest zbiornik buforowy. Podczas jego używania trzeba pamiętać, aby raz na 2-3 lata poddać układ i ten zbiornik dezynfekcji. Ja robię to w ten sposób, że wysuwam zużyte filtry i membranę, łącze  w układ zamkniety węże, do zbiornika pierwszego kielicha dodaje chloru do dezynfekcji basenów ( wystarczy 1/10 tabletki}. Jak chlor w kielichu sie rozpuści to powoli odkręcam wodę do całkowitego napełnienia zbiornika. Pozostawiam na 1-2 godziny i wylewam wodę. Potem znowu napełniam i tak do momentu, aż z kranika będzie lecieć woda bez zapachu chloru. Niekiedy trzeba płukanie zrobić 5-6 razy.
Do zdezynfekowanego układu instaluję filtry, nowa osmozę i nowe filtry liniowe i gotowe.

    Nie ma, co panikować, na pewno woda z RO zapobiegnie kamienicy nerkowej, herbata, kawa, kompot czy zupa smakuje wyśmienicie. Najistotniejsze, że woda jest pozbawiona metali ciężkich a co one robią z naszym organizmem nie musze pisać. Tak jak z każdą nowinką techniczną trzeba trochę wiedzy, czasami pokombinować i można z niej korzystać bez obaw.


Pozdrawiam

poniedziałek, 25 lipca 2016

Włóknina ścierna- charakterystyka


    Włókniny ścierne są trójwymiarowym produktem ściernym. Szkielet włókniny wykonany jest z niesplecionych ze sobą włókien syntetycznych odpornych na działanie wody i płynów stosowanych w trakcie obróbki. Włókna te są bardzo mocne, nie łamią się nie odkształcają i mają tzw. efekt pamięci, czyli po zgięciu cofają do swojego wcześniejszego kształtu.

    Do włókien przyczepione są, za pomocą spoiwa z żywic syntetycznych, ziarna ścierne. Cząstki ziaren są rozmieszczone równomiernie dookoła włókien w całym przekroju gotowego produktu. Powstaje trójwymiarowa, elastyczna struktura dająca nadzwyczaj dobre wyniki w trakcie pracy.
Wielkość ziaren w odróżnieniu od osełek podawana jest w szerszym przedziale. W większości materiałów ściernych wymiar ziarna określana jest umownie i ujednoliconą normą międzynarodową FEPA  i oznaczana literą "P" przed numerem granulacji. Wypełnieniee przez ziarno zasady FEPA świadczy, że jego wielkość dla danej granulacji nie jest większa niż określona w normie. W praktyce oznacza, że szlifując granulacją "P80" realizujemy powtarzający i jednakowy poziom zarysowań wykańczanej powierzchni.



W przypadku włóknin gradację nazywa się następująco:

Coarse, grube ziarno- granulacja P80 - P120
Medium średnie ziarno- granulacja P120 do P180
Fine wykańczające- granulacja P180 - P240
Very Fine bardzo drobne- granulacja P240 do P320
Ultra Fine polerowanie- granulacja P400 - P600
Super fine polerowanie wykańczające - granulacja P600 do P1000

    Użyte ziarna ścierne to przede wszystkim elektrokorund szlachetny, węglik krzemu i czasami cyrkon.

Więcej informacji znajdą państwo na blogu: skleptechnika24.pl

    Zalety włóknin. Przestrzenne ułożenie włókien, równomierne ułożenie ziaren do o koła włókien, obróbka małoiskrowa ( nie nagrzewa materiałów obrabianych).
Znaczne przestrzenie między włóknami przejmują zanieczyszczenia i urobek z obrabianej powierzchni (detal jest obrabiany przez czystą włókninę)
Wodoodporność włóknin, można je płókać wodą z mydłem, przez co nadają się do powierzchni zabrudzonych, zatłuszczonych, pokrytych olejami i smarami.
Elastyczność włókien powoduje łatwość dopasowania się do skomplikowanych kształtów.

    Włóknina ścierna może być zastosowana do pracy ręcznej i mechanicznej( pasy bezkońcowe, lamelki, ściernice trzpieniowe). Nadaje się do obróbki ściernej: powierzchni stalowych, nierdzewki, metali kolorowych, takich jak stopy aluminium, mosiądz, miedź, nikiel, jak również dopowierzchni szklanych.


Ponieważ włóknina ścierna jest wodoodporna może być stosowana w kuchni jako zastępstwo dla czyścików oraz metalowych gąbek. Wytrzymałe włókna oraz materiał ścierny dobrze czyszczą kuchenki i grille, usuwają przypalone resztki żywności z garnków i brytwanek.

niedziela, 24 lipca 2016

Narzędzia skrawające cz. 1

   Cześć, dzisiaj nieco teorii, czyli podział narzędzi skrawających część pierwsza.
Istnieje parę rodzajów podziału narzędzi skrawających: według rodzaju obróbki:  noże strugarskie, rozwiertaki, wiertła, przepychacze,  pogłębiacze, frezy, gwintowniki, głowice gwintujące,  frezy ślimakowe,  piły, skrobaki.
Według zarysu obrabianej powierzchni: do powierzchni zewnętrznych płaszczyzn i powierzchni obrotowych, do obróbki otworów, do obróbki gwintów, do obróbki kół zębatych, do obróbki rowków.
Najbardzie popularne są wiertła i je opisze w tym artykule.

    Podział wierteł można dokonać ze względu na:

    Przeznaczenie: wiertła ogólnego przeznaczenia, to wszystkie wiertła kręte i piórkowe do wiercenia w litych materiałach. Wiertła specjalistyczne: wiertła wielostopniowe, tzw. choinki, wiertła stożkowe, wiertła do głębokich otworów.

    Ze względu na sposób konstrukcji: Wiertła monolityczne wykonane ze stali szybkotnącej, wiertła łączone z częścią roboczą ze stali szybkotnącej lub z węglika spiekanego zgrzewaną częścią chwytową, lub z lutowanymi ostrzami z węglików spiekanych, wiertła drążone z wewnętrznym rowkiem chłodzącym.
Wiertła koronkowe i trepanacyjne, przeznaczone są do wykonywania otworów o znacznych średnicach. Skrawanie odbywa sie tylko na obwodzie narzedzia wyposażonego w ostrza skrawające. Część środkowa pozostaje nietknięta, dzięki takiemu rozwiązaniu otwory wykonuje się znacznie szybciej. Narzędzia są tańsze i mają mniejszą wagę. Przypadłością tego rodzaju obróbki jest pozostający rdzeń, w przypadku otworów przelotowych pozostaje on wewnątrz narzędzia i trzeba go mechanicznie usunąć. W przypadku otworów nieprzelotowych rdzeńśrodekusuwa się ręcznie.

    Następnym kryterium podziału wierteł jest rodzaj chwytu. I tak mamy: chwyt walcowy gładki, chwyt walcowy z zabierakiem prostokątnym lub wielokątnym (chwyt trzykątny), z chwyt stożkowy ( wiertła NWKc), z chwyt walcowy z dodatkowymi zabierakami i otworami wgłębnymi( SDS Plus).
Ze względu na rodzaj obrabianego materiału; wiertła do stali konstrukcyjnych, wiertła do stali nierdzewnych, wiertła do metali nieżelaznych, wiertła specjalne węglikowe wysokoobrotowe do zastosowania na centrach obróbczych CNC. Dalej wiertła do betonu, wiertła płytkowe do szkła, wiertła diamentowe do gresu i ceramiki, wiertła koronkowe do materiałów ceramicznych, wiertła do drewna, wiertła wielozadaniowe do różnych rodzajów materiałów.

    Na koniec napiszę o popularnych wiertłach krętych.
  Wiertła kręte są narzędziami walcowymi. Do najczęściej stosowanych należą wiertła kręte mające dwa ostrza robocze oraz dwa rowki do usuwania urobku w postaci wiórów. Wiertła te są prowadzone w otworze za pomocą dwóch łysinek rozmieszczonych po obwodzie wzdłuż rowków, na zewnętrznej części wiertła. Dwie krawędzie skrawające są połączone ścinem. Często ścin jest skracany, tzn. korygowany w celu dodania dodatkowych krawędzi skrawających. Powoduje to, że wiertło nam nie ucieka w początkowej fazie obróbki i mniej się nagrzewa. Trzeba bowiem pamiętać, że ścin nie skrawa ze względu na znaczny kąt wierzchołkowy rzędu 125-135 stopni. Krawędzie skrawające muszą być zawsze tej samej długości, dzięki temu wiertło nie ma bicia i robi otwór równy swojej średnicy.
Powierzchnie skrawające powinny być gładkie tak, aby zminimalizować przyklejanie się wiórów i ograniczyć tarcie. Kąty skrawania i kąt wierzchołkowy jest zależny od przeznaczenia wiertła.
Koniec części pierwszej.

sobota, 23 lipca 2016

Drut do drukarki 3D

Dzień dobry

    Technologia drukowania FDM polega na tworzeniu elementów z polimerów podawanych z ekstrudera w postaci drutu o średnicy 1.75mm lub 3mm, na płytę modelową.
Sposób działania jest analogiczny  jak w drukarkach atramentowych. Głowica z dyszą aplikuje materiał bazowy - podporowy i przemieszcza sie w płaszczyźnie X Y. Nałożone tworzywo o określonej grubości (o tym poniżej) zastyga w kilka sekund. Następnie głowica lub stół modelarski przemieszcza się w płaszczyźnie Z i nakładana jest następna warstwa w płaszczyznach X Y.

    Drut do drukarek 3D nazywany jest filamentem. Jakość wydruku w decydującej mierze zależy, od jakości filamentu. Wszelkie zanieczyszczenia, nierówności powierzchni czy wilgotność oddziałują niekorzystnie na wytrzymałość i powierzchnię drukowanego modelu. W ( technice FDM|drukarce} filament podawany jest ze szpuli do ekstrudera, w którym drut jest topiony w temperaturze 170-250 stopni i pod ciśnieniem wystrzeliwany przez dyszę drukującą. Drukarki 3D drukują w jednym kolorze takim jak filament. Zależnie od drukarek minimalne grubości drukowanej ścianki mogą wynosić od 0,1mm do 0,6mm. Grubość nakładanej powłoki waha się od 0,1mm do 0,01mm i jest wprost proporcjonalny do prędkości drukowania.
Rodzaje filamentów.



    W praktyce wykorzystuje się dwa rodzaje tworzyw termoplastycznych ABS i PLA. Aczkolwiek technologia FDM pozwala na drukowanie z użyciem drutów z poliwęglanu, nylonu, polietylenu i innych..
ABS (akrylo-butylo-styren) to szeroko rozpowszechnione tworzywo. Wykorzystywane min. w przemyśle motoryzacyjnym, AGD i RTV. Jest nieodporne na agresywne rozpuszczalniki organiczne np. Aceton. ABS ma dobre właściwości mechaniczne, jest odporny na uderzenia, jego gęstość wynosi około 1.05 g/cm3. Zalecana temperatura druku to 230-250 °C i co jest bardzo istotne wymaga podgrzewanego stołu modelowego, z tego powodu niepopularny w amatorskich drukarkach.
PLA jest znacznie twardszy, gęstość 1.25 g/cm3 i przez to bardziej kruchy, szczególnie w ujemnych temperaturach. Ciekawą właściwością PLA jest jego biodegradowalność. Tworzywo posiada niską temperaturę druku około 170-190 °C. Przez to nie potrzebuje on podgrzewanego stołu modelowego.
Pozdrawiam

piątek, 22 lipca 2016

Pompa premium C3 Nilfisk ALTO

    Nilfisk-ALTO zasłyną wprowadzeniem na rynek pompy C3 o długiej żywotności. Jest to najwyższej klasy pompa, która od 20 lat znajduje wykorzystanie w najbardziej ekstremalnych warunkach pracy. Aktualnie Nilfisk-ALTO wprowadza kolejną wysokiej klasy pompę do wachlarza swoich wyrobów. To zaawansowana pompa NA6, której budowa była zainspirowana sukcesem C3. Kolejna linia pomp przyniesie znaczne korzyści naszym klientom. Otworzy się olbrzymi wachlarz zastosowań w zakresie ciśnienia aż do 250 bar oraz zużyciu wody do 1600 l/h. Z racji wysokiej temperatury na wylocie (aż do 80 stopni) pompa będzie w stanie pracować w warunkach wysokich temperatur wody nawet w maszynach zimnowodnych. Przyczynia się to do zredukowania kosztów mycia, ale również do udoskonalenia jego rezultatów. Pompa dysponuje olbrzymią i niesamowitą moc, do jej budowy wykorzystano m.in. 4 tłoki ceramiczne o dużej wytrzymałości, wzmocnioną mosiężną głowicę, zawory ze stali oraz dwa łożyska oporowe. W czasie próby projektowej pompa wytrzymała 10 000 godzin nieustannej pracy, jej tłoki w trakcie pracy przebyły trasę odpowiednią dla długości 1.5 raza obwodu ziemi. Pompa posiada wydajny silnik 4-biegunowy (1450 obr./min.) schładzany powietrzem, wyposażony w zabezpieczenie termiczne, co w połączeniu z systemem sterowania aktywowanym przepływem (FA) daje dodatkowy komfort pracy i zabezpieczenie silnika przed przeciekami.

    Firma Nilfisk-ALTO tworzy myjki ciśnieniowe wyposażone w niezawodne i trwałe pompy krzywkowe wykonane z wysokiej klasy materiałów odpornych na korozję, takich jak np. mosiężna głowica pompy. Używane przez nią silniki 4-biegunowe lub 2-biegunowe chłodzone powietrzem są wielce wydajnymi i bezobsługowymi jednostkami, które zapewniają redukcję strat energii. Silniki te mają wbudowany automatyczny system start-stop, dzięki czemu nie pracują w trakcie przerw w czyszczeniu- nie pobierają energii oraz nie wytwarzają hałasu.
Nie tylko trwałe pompy o dużej mocy przesądzają o tym, że myjki ciśnieniowe Nilfisk-AlLTO są jednymi z najlepszych myjek ciśnieniowych na rynku. Są one zaopatrzone w innowacyjne systemy wspomagające pracę oraz ułatwiające ich użytkowanie. Najwyższej klasy modele gorąco wodne wyposażone są w funkcję inteligentnej kontroli serwisowej, która stanowi formę systemu diagnostycznego wskazującego występowanie wszelakich nieprawidłowości wywołanych uszkodzeniem lub zużyciem, co pozwala użytkownikowi na rozpoczęcie bezpośrednich działań lub skontaktowanie się z siecią serwisową. Błyskawiczna identyfikacja zagrożeń może przyczyniać się do minimalizowania kosztów serwisowania oraz zmniejszenia ryzyka zaistnienia postojów. Następny system to hydrauliczny system sterowania aktywowany przepływem (FA).Wyposażone jest w niego wiele spośród wysokiej i średniej klasy modeli myjek zimno i gorąco wodnych. Pozwala on na pozostawienie głowicy w trybie gotowości w fazie dekompresji. W wyniku wdrożenia tej technologii, użytkowanie węża oraz pistoletu staje się łatwiejsze i bezpieczniejsze. Ponowne uruchomienie maszyny jest delikatniejsze i nie powoduje nagłych odrzutów pistoletu lub lancy. Co więcej myjka jest zabezpieczona przed wariacjami pracy silnika wywołanymi występowaniem przecieków na pompie, wężu czy pistolecie zapewniając w ten sposób jej dłuższą żywotność i solidność.

    Bardzo ważnym czynnikiem, który powinna posiadać myjka ciśnieniowa są również akcesoria potrzbne do jej użytkowania. Tradycyjny duński sposób projektowania polega na optymalizacji ergonomii oraz zapewnieniu łatwości użytkowania. Nie inaczej rzecz wygląda w przypadku sprzętu Nilfisk-ALTO. Pistolet Ergo 2000 wymaga małego nakładu siły fizycznej w celu jego uruchomienia, tym samym przyczyniając Się do redukcji zmęczenia a nawet zagrożenia kontuzji. Myśl techniczna Nilfisk-ALTO nie koncentruje się wyłącznie na zapewnieniu oszczędności ale również na ochronie zdrowia i kondycji użytkowników.